Nowo utworzony stront – pierwiastek wykorzystywany w fajerwerkach – został po raz pierwszy wykryty w kosmosie dzięki obserwacjom przy użyciu teleskopu ESO.

Po raz pierwszy wykryto w kosmosie świeżo utworzony ciężki pierwiastek stront, jako pozostałość po złączeniu się dwóch gwiazd neutronowych. Udało się to dzięki obserwacjom wykonanym przy pomocy należącego do ESO spektrografu X-shooter na Bardzo Dużym Teleskopie (VLT). Wyniki badań opublikowano dzisiaj w „Nature”. Detekcja jest potwierdzeniem, że cięższe pierwiastki we Wszechświecie mogą formować się w zderzeniach gwiazd neutronowych, dokładając brakujący element w układance powstawania pierwiastków chemicznych.

W 2017 roku, po wykryciu fal grawitacyjnych docierających do Ziemi, ESO skierowała swoje teleskopy z Chile, w tym VLT, na źródło tych fal: merdżer gwiazd neutronowych nazwany GW170817. Astronomowie podejrzewali, że jeśli cięższe pierwiastki formują się w kolizjach gwiazd neutronowych, ich sygnatury powinny być możliwe do wykrycia w kilonowej, wybuchowej pozostałości po merdżerze. Właśnie to udało się dokonać zespołowi europejskich badaczy analizujących dane z instrumentu X-shooter na teleskopie VLT.

Śledząc ewolucję merdżera GW170817, flota teleskopów ESO rozpoczęła monitorowanie rozwijającej się eksplozji kilonowej, czyniąc to w szerokim zakresie długości fal. W szczególności, X-shooter uzyskał serię widm od ultrafioletu do bliskiej podczerwieni. Początkowe analizy tych widm sugerowały występowanie ciężkich pierwiastków w kilonowej, astronomowie nie byli aż do teraz w stanie ustalić jakie to konkretnie były pierwiastki.

„Powtórnie analizując dane z 2017 roku, dotyczące merdżera, udało się nam zidentyfikować sygnatury jednego z ciężkich pierwiastków w wybuchu – strontu – udowadniając, że kolizja gwiazd neutronowych tworzy ten pierwiastek we Wszechświecie” powiedział Darach Watson z Uniwersytetu Kopenhaskiego w Danii, pierwszy autor publikacji. Na Ziemi stron jest znajdowany w stanie naturalnym w glebie i jest skoncentrowany w niektórych minerałach. Jego sole są używane do nadawania fajerwerkom błyszczącego czerwonego koloru.

Astronomowie znają fizyczne procesy tworzenia pierwiastków od lat 50. ubiegłego wieku. Przez kolejne dziesięciolecia odkryli w kosmosie miejsca każdej z większych nuklearnych „kuźni”, z wyjątkiem jednej. „Jest to końcowy etap trwającej dekady pogoni za ustaleniem pochodzenia pierwiastków” mówi Watson. „Obecnie wiemy, że procesy, które wytworzyły pierwiastki zachodziły głównie w normalnych gwiazdach, w wybuchach supernowych lub w zewnętrznych warstwach starych gwiazd. Ale do tej pory nie znaliśmy lokalizacji końcowego, nieodkrytego procesu, znanego jako szybki wychwyt neutronów, w którym powstają cięższe pierwiastki układu okresowego.”

Szybki wychwyt neutronów (tzw. „proces r”) jest procesem, w którym jądro atomowe wychwytuje neutrony na tyle szybko, że pozwala to na utworzenie bardzo ciężkich pierwiastków. Chociaż wiele pierwiastków powstaje w jądrach gwiazd, to tworzenie pierwiastków cięższych od żelaza, takich jak stront, wymaga jeszcze gorętszego środowiska z wielką ilością wolnych neutronów. Szybki wychwyt neutronów zachodzi w sposób naturalny w ekstremalnych środowiskach, w których atomy są bombardowane przez gigantyczną liczbę neutronów.

“Po raz pierwszy mogliśmy bezpośrednio powiązać nowo utworzoną materię uformowaną przez wychwyt neutronów z merdżerem gwiazd neutronowych, potwierdzając, że gwiazdy neutronowe są zbudowane z neutronów i wiążąc długotrwałą debatę na temat procesu szybkiego wychwytu neutronów z tego typu merdżerami” mówi Camilla Juul Hansen z Max Planck Institute for Astronomy w Heidelbergu, która odegrała istotną rolę w badaniach.

Naukowcy dopiero zaczynają lepiej rozumieć merdżery gwiazd neutronowych i kilonowe. Z powodu ograniczeń w zrozumieniu tego nowego zjawiska i skomplikowania widm, które X-shooter uzyskał po wybuchu, astronomowie nie byli do tej pory w stanie zidentyfikować poszczególnych pierwiastków.

„Tak naprawdę pomysł, że możemy widzieć stron, przyszedł całkiem szybko po zdarzeniu. Jednak wykazanie, że tak faktycznie jest, było bardzo trudne. Trudności wynikały z mocno niekompletnej wiedzy o wyglądzie widmowym cięższych pierwiastków układu okresowego” mówi Jonatan Selsing, badacz z Uniwersytetu Kopenhaskiego, który także był kluczowym autorem artykułu.

Merdżer GW170817 był piątą detekcją fal grawitacyjnych, możliwą dzięki należącemu do NSF obserwatorium Laser Interferometer Gravitational-Wave Observatory (LIGO) w Stanach Zjednoczonych oraz interferometrowi Virgo we Włoszech. Merdżer położony w galaktyce NGC 4993 był pierwszym, i jak na razie jedynym, źródłem fal grawitacyjnych, dla którego udało się zidentyfikować widzialny odpowiednik przez teleskopy na Ziemi.

Dzięki połączonym wysiłkom LIGO, Virgo i VLT uzyskaliśmy najlepsze jak dotąd zrozumienie wewnętrznego działania gwiazd neutronowych i ich wybuchowych merdżerów.

Źródło: European South Observatory.